Na+-K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis.
نویسندگان
چکیده
The Na(+)-K(+) pumps in the transverse tubular (T) system of a muscle fiber play a vital role keeping K(+) concentration in the T-system sufficiently low during activity to prevent chronic depolarization and consequent loss of excitability. These Na(+)-K(+) pumps are located in the triad junction, the key transduction zone controlling excitation-contraction (EC) coupling, a region rich in glycolytic enzymes and likely having high localized ATP usage and limited substrate diffusion. This study examined whether Na(+)-K(+) pump function is dependent on ATP derived via the glycolytic pathway locally within the triad region. Single fibers from rat fast-twitch muscle were mechanically skinned, sealing off the T-system but retaining normal EC coupling. Intracellular composition was set by the bathing solution and action potentials (APs) triggered in the T-system, eliciting intracellular Ca(2+) release and twitch and tetanic force responses. Conditions were selected such that increased Na(+)-K(+) pump function could be detected from the consequent increase in T-system polarization and resultant faster rate of AP repriming. Na(+)-K(+) pump function was not adequately supported by maintaining cytoplasmic ATP concentration at its normal resting level ( approximately 8 mM), even with 10 or 40 mM creatine phosphate present. Addition of as little as 1 mM phospho(enol)pyruvate resulted in a marked increase in Na(+)-K(+) pump function, supported by endogenous pyruvate kinase bound within the triad. These results demonstrate that the triad junction is a highly restricted microenvironment, where glycolytic resynthesis of ATP is critical to meet the high demand of the Na(+)-K(+) pump and maintain muscle excitability.
منابع مشابه
T . L . Dutka and G . D . Lamb glycolysis skeletal muscle fibers preferentially use ATP from Na + - K + pumps in the transverse tubular system of
[PDF] [Full Text] [Abstract] , January 1, 2008; 88 (1): 287-332. Physiol Rev D. G. Allen, G. D. Lamb and H. Westerblad Skeletal Muscle Fatigue: Cellular Mechanisms [PDF] [Full Text] [Abstract] , February 1, 2008; 586 (3): 875-887. J. Physiol. T. L. Dutka, R. M. Murphy, D. G. Stephenson and G. D. Lamb importance in excitation-contraction coupling and fatigue Chloride conductance in the trans...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملA new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملStimulation of both aerobic glycolysis and Na+-K+-ATPase activity in skeletal muscle by epinephrine or amylin.
Epinephrine and amylin stimulate glycogenolysis, glycolysis, and Na+-K+-ATPase activity in skeletal muscle. However, it is not known whether these hormones stimulate glycolytic ATP production that is specifically coupled to ATP consumption by the Na+-K+pump. These studies correlated glycolysis with Na+-K+-ATPase activity in resting rat extensor digitorum longus and soleus muscles incubated at 3...
متن کاملThe Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers
Na (and Li) currents and fluorescence transients were recorded simultaneously under voltage-clamp conditions from mouse flexor digitorum brevis fibers stained with the potentiometric dye di-8-ANEPPS to investigate the distribution of Na channels between the surface and transverse tubular system (TTS) membranes. In fibers rendered electrically passive, voltage pulses resulted in step-like fluore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 293 3 شماره
صفحات -
تاریخ انتشار 2007